
Q1.The picture shows an electric bicycle. The bicycle is usually powered using a combination of the rider pedalling and an electric motor.

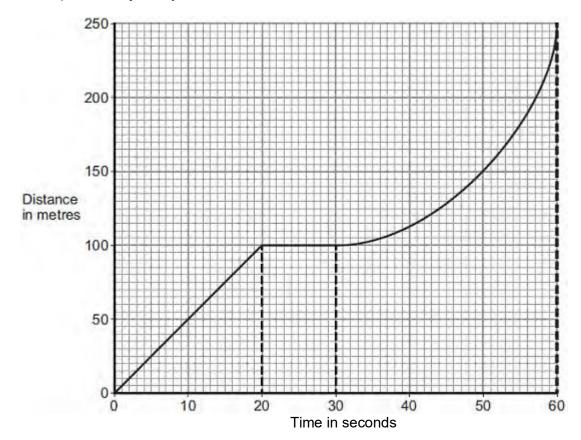
(a)		6 volt battery powers the electric motor. The battery is made using individual 1.2 cells.	
	(i)	Explain how a 36 volt battery can be produced using individual 1.2 volt cells.	
		To gain full marks, you must include a calculation in your answer.	
			(2)
	(ii)	The battery supplies a direct current (d.c.).	
		What is a direct current (d.c.)?	
			(1)
	(iii)	When fully charged, the battery can deliver a current of 5 A for 2 hours. The battery is then fully discharged.	
		Calculate the maximum charge that the battery stores.	
		Show clearly how you work out your answer and give the unit.	

		Charge stored =	(3)
(b)	max	en powered only by the electric motor, the bicycle can carry a 90 kg rider at a imum speed of 6 m/s. Under these conditions, the maximum distance that the cle can cover before the battery needs recharging is 32 km.	
	The	bicycle has a mass of 30 kg.	
	(i)	Calculate the maximum kinetic energy of the bicycle and rider when the rider is not pedalling.	
		Show clearly how you work out your answer.	
		Vinatio anarry -	
		Kinetic energy = J	(2)
	(ii)	The bicycle can be fitted with panniers (bags) to carry a small amount of luggage.	
		What effect would fitting panniers and carrying luggage have on the distance the bicycle can cover before the battery needs recharging?	
		Give a reason for your answer.	
		(Total 10 ma	(2) arks)

Q2. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The *resultant force* on the aircraft is zero.

(i)	What is meant by the term resultant force?	
		(1)
(ii)	Describe the movement of the aircraft when the resultant force is zero.	
		(1)
	aircraft has a take-off mass of 320 000 kg. Each of the 4 engines can produce ximum force of 240 kN.	
Calcu	late the maximum acceleration of the aircraft.	
Show	clearly how you work out your answer and give the unit.	

Acceleration =


(3)

(b)

though the force from the engines is constant.
Explain why.
(2) (Total 7 marks)

Q3.A bus is taking some children to school.

(a) The bus has to stop a few times. The figure below shows the distance–time graph for part of the journey.

(i) How far has the bus travelled in the first 20 seconds?

Distance travelled = m

(1)

(1)

(ii) Describe the motion of the bus between 20 seconds and 30 seconds.

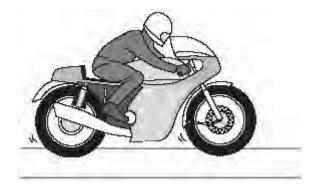
.....

(iii) Describe the motion of the bus between 30 seconds and 60 seconds.

Tick (**✓**) **one** box.

Tick (✓)

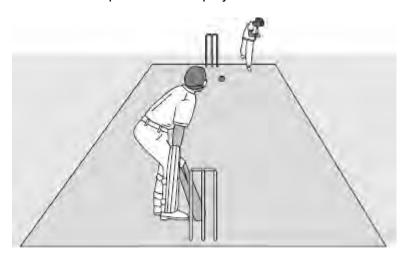
		Reversing						
		Travelling at constant speed						
					(1)			
	(iv)	What is the speed of the bus at 45 s	econds?					
		Show clearly on the figure above ho	w you obtair	ned your answer.				
		Speed =		m / s	(3)			
(b)	Later in the journey, the bus is moving and has 500 000 J of kinetic energy.							
	The brakes are applied and the bus stops.							
	(i)	How much work is needed to stop th	ne bus?					
		Work =		J	(1)			
	(ii)	The bus stopped in a distance of 25	m.					
	()	Calculate the force that was needed		bus.				


Accelerating

Force = N

(2)

(iii)	What happens to the kinetic energy of the bus as it is braking?
	(2) (Total 11 marks)


Q4. The diagram shows a motorbike of mass 300 kg being ridden along a straight road.

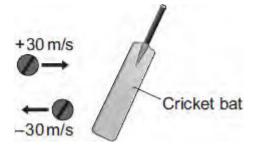
The rider sees a traffic queue ahead. He applies the brakes and reduces the speed of the motorbike from 18 m/s to 3 m/s.

(a)	Calculate the kinetic energy lost by the motorbike.				
	Sho	ow clearly how you work out your answer.			
	•••••				
		Kinetic energy lost =	(2)		
(b)	(i)	How much work is done on the motorbike by the braking force?			
	(ii)	What happens to the kinetic energy lost by the motorbike?	(1)		
		((1) Total 4 marks)		

Q5. The picture shows players in a cricket match.

(a) A fast bowler bowls the ball at 35 m/s. The ball has a mass of 0.16 kg.

Use the equation in the box to calculate the kinetic energy of the cricket ball as it leaves the bowler's hand.


$$\frac{1}{2} \times \text{mass} \times \text{speed}^2$$

Show	clearly	how y	ou/	work	out :	your	answer.	

(2)

(b) When the ball reaches the batsman it is travelling at 30 m/s. The batsman strikes the ball which moves off at 30 m/s in the opposite direction.

(i) Use the equation in the box to calculate the change in momentum of the ball.

momentum = mass × velocity	
Show clearly how you work out your answer.	
Change in momentum = kg m/s	(2)
(ii) The ball is in contact with the bat for 0.001 s. Use the equation in the box to calculate the force exerted by the bat on the	
force = change in momentum time taken for the change	
Show clearly how you work out your answer.	
Force =	(1)
(c) A fielder, as he catches a cricket ball, pulls his hands backwards.Explain why this action reduces the force on his hands.	
Explain why this action reduces the force of this hards.	
	(6)
(Total	(2) 7 marks)

Q6. (a)		opping distance of a vehicle is made up of two parts, the thinking distance and oraking distance.	
	(i)	What is meant by thinking distance?	
			(1)
	<i>"</i>		
	(ii)	State two factors that affect thinking distance. 1	
		2	
			(2)
(b)		ar is travelling at a speed of 20 m/s when the driver applies the brakes. The car elerates at a constant rate and stops.	
	(i)	The mass of the car and driver is 1600 kg.	
		Calculate the kinetic energy of the car and driver before the brakes are applied.	
		Kinetic energy = J	(2)
			(-)
	(ii)	How much work is done by the braking force to stop the car and driver?	
		Work done = J	(1)

	Calculate the braking distance of the car.	
	Braking distance = m	(2)
(iv)	The braking distance of a car depends on the speed of the car and the braking force applied.	
	State one other factor that affects braking distance.	
		(1)
(v)	Applying the brakes of the car causes the temperature of the brakes to increase.	
	Explain why.	
		(2)
fitted	rid cars have an electric engine and a petrol engine. This type of car is often d with a regenerative braking system. A regenerative braking system not only as a car down but at the same time causes a generator to charge the car's ery.	
State	e and explain the benefit of a hybrid car being fitted with a regenerative braking em.	

(c)

	(3) otal 14 marks)
(7)	otal 14 marks)